Premijos matematikams

Vakar buvo paskelbti pirmieji naujo prizo matematikams, ,,Breakthrough Prize in Mathematics”, laimėtojai (

Simon Donaldson, Stony Brook University and Imperial College London, for the new revolutionary invariants of 4-dimensional manifolds and for the study of the relation between stability in algebraic geometry and in global differential geometry, both for bundles and for Fano varieties.

Maxim Kontsevich, Institut des Hautes Études Scientifiques, for work making a deep impact in a vast variety of mathematical disciplines, including algebraic geometry, deformation theory, symplectic topology, homological algebra and dynamical systems.

Jacob Lurie, Harvard University, for his work on the foundations of higher category theory and derived algebraic geometry; for the classification of fully extended topological quantum field theories; and for providing a moduli-theoretic interpretation of elliptic cohomology.

Terence Tao, University of California, Los Angeles, for numerous breakthrough contributions to harmonic analysis, combinatorics, partial differential equations and analytic number theory.

Richard Taylor, Institute for Advanced Study, for numerous breakthrough results in the theory of automorphic forms, including the Taniyama-Weil conjecture, the local Langlands conjecture for general linear groups, and the Sato-Tate conjecture.

Kiekvienas lauriatas lapkričio mėnesį vyksiančioje apdovanojimų ceremonijoje gaus 3 milijonų dolerių ,,trofėjų”.

Aš praėjusiais metais dalyvavau ,,Naktų naktyje”, kur skaičiau pranešimą tema ,,Nobelio premija matematikams”, kurį, atsižvelgiant į šį naują prizą, jau reikėtų atnaujinti.

This entry was posted in Uncategorized. Bookmark the permalink.

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s